
The National Center for Atmospheric Research is sponsored by the National Science Foundation. 
Any opinions, findings and conclusions or recommendations expressed in this publication are those 
of the author(s) and do not necessarily reflect the views of the National Science Foundation.

©UCAR

DART Tutorial Section 21:
Observation Types and Observing System Design



DART Assimilations controlled by Observation Sequence Files

Observation sequence files contain a time-ordered list of 
observations. (Stored with a ‘linked list’ of increasing times; obs do 
not have to be physically in time order in the file.)

/home/nancy/nancy_work/tutorial/section21/tut_section21.fm 2 5/29/08

Dart assimilations are controlled by observation sequence files:

Observation sequence files contain a time-ordered list of observations.
Stored as a ‘linked list’ of observations.

DART filter ‘assimilates’ until it runs out of observations.
Same for synthetic observation generation with perfect_model_obs.

Values
(0 or more)

QC Fields
(0 or more)

Unique Key

Definition

Values
(0 or more)

QC Fields
(0 or more)

Unique Key

Definition

Values
(0 or more)

QC Fields
(0 or more)

Unique Key

Definition...

First Time Last Time

Values
(0 or more)

QC Fields
(0 or more)

Unique Key

Definition

DART filter ‘assimilates’ until it runs out of observations.
Same for synthetic observation generation with perfect_model_obs 

DART Tutorial Section 21: Slide 2



Observation Type Details

Unique Key

Values       (0 
or more)

QC Fields    
(0 or more)

Definition

obs_type

Location

Observation Type

Time

Error Variance

Unique Def. Key

obs_def_typeInteger

Section 17

DART Tutorial Section 21: Slide 3



Observation Type Details

Location

Observation Type

Time

Error Variance

Unique Def. Key

obs_def_type

Location type required 
for model’s domain 
(1D, 3D_sphere, …)

Integer index into 
obs_type_info  table 
in obs_kind_mod

time_type

This is not the same key 
as in observation type. 

DART Tutorial Section 21: Slide 4



Observation Definition Details

Example: Observation is a radiosonde temperature

Integer F90 type 
identifier

RADIOSONDE_
TEMPERATURE

… ACARS_U_WIND_
COMPONENT

Name: String 
version of identifier

“RADIOSONDE_
TEMPERATURE”

… “ACARS_U_WIND_
COMPONENT”

Generic Variable 
Quantity

QTY_
TEMPERATURE

… QTY_U_WIND_
COMPONENT

Assimilate? TRUE … FALSE

Evaluate? FALSE … TRUE

Use precomputed 
obs? 

FALSE … FALSE

Location

Observation Type

Time

Error Variance

Unique Def. Key

obs_def_type

obs_type_info

DART Tutorial Section 21: Slide 5



Observation Generic Kinds and Specific Types

obs_type_info table built by DART preprocess program

Radiosonde temps assimilated, forward operators only for ACARS U 

Integer F90 type 
identifier

RADIOSONDE_
TEMPERATURE

… ACARS_U_WIND_
COMPONENT

Name: String 
version of identifier

“RADIOSONDE_
TEMPERATURE”

… “ACARS_U_WIND_
COMPONENT”

Generic Variable 
Quantity

QTY_
TEMPERATURE

… QTY_U_WIND_
COMPONENT

Assimilate? TRUE … FALSE

Evaluate? FALSE … TRUE

Use precomputed 
obs? 

FALSE … FALSE

obs_type_info Defined in 
special obs_def 
module headers

Integer parameters 
in global data 
section of 
obs_kind module 

In obs_kind_nml. 
See section 17.

DART Tutorial Section 21: Slide 6



Observation Generic Quantities and Specific Types

Integer F90 type 
identifier

RADIOSONDE_
TEMPERATURE

… ACARS_U_WIND_
COMPONENT

Name: String 
version of identifier

“RADIOSONDE_
TEMPERATURE”

… “ACARS_U_WIND_
COMPONENT”

Generic Variable 
Quantity

QTY_
TEMPERATURE

… QTY_U_WIND_
COMPONENT

Assimilate? TRUE … FALSE

Evaluate? FALSE … TRUE

Use precomputed 
obs? 

FALSE … FALSE

obs_type_info Defined in 
special obs_def 
module headers

Integer parameters 
in global data 
section of 
obs_kind module 

In obs_kind_nml. 
See section 17.

Both have generic QTY_TEMPERATURE.
Model state variables are also be associated with generic quantities. 

Many observation types may share a generic quantity.
Example: RADIOSONDE_TEMPERATURE, ACARS_TEMPERATURE... 

DART Tutorial Section 21: Slide 7



Observation Generic Quantities and Specific Types

Many observation types may share a generic quantity
Example: RADIOSONDE_TEMPERATURE, ACARS_TEMPERATURE

Both have generic QTY_TEMPERATURE.

Model state variables are also associated with generic quantities
Example: CAM/WRF interpolate in T field for all observation 

types with generic quantity QTY_TEMPERATURE. 

Models can use the obs_kind_mod:
Have access to all generic quantities.
Also have access to all observation types if needed.

CONFUSING generic quantities and specific 
observation types is common. 

DART Tutorial Section 21: Slide 8



Implementing Observation Definitions in DART

In an observations/forward_operators/obs_def_xxx_mod.f90 file:

1. Give the observation specific type a name. This is where the 
name is defined.

2. Associate the observation specific type with a generic quantity, 
which must already exist in the DART QTY_xxx list.

3. Optionally specify a keyword to autogenerate needed routines
if no specialized handling or additional metadata.

Example:

! BEGIN DART PREPROCESS KIND LIST
! AIRS_TEMPERATURE,        QTY_TEMPERATURE,        COMMON_CODE
! AIRS_SPECIFIC_HUMIDITY,  QTY_SPECIFIC_HUMIDITY,  COMMON_CODE
! END DART PREPROCESS KIND LIST

If using the autogenerated routines no additional work is needed.DART Tutorial Section 21: Slide 9



Implementing Observation Definitions in DART

If the forward operator requires additional code, or if this
observation specific type has additional metadata, omit the
COMMON_CODE keyword and supply additional routines:

Four operations must be supported for each observation type:
1. Compute forward operator given (extended) state vector
2. Read any extra information not in obs_def_type from file

(For instance, location and beam angle for radar).
3. Write any extra information not in obs_def_type to file
4. Get any extra information via interactive read of standard in

If additional metadata, suggest two additional routines:
1. get_metadata()
2. set_metadata()

DART Tutorial Section 21: Slide 10



Implementing Observation Definitions in DART

obs_def_xxx_mod.f90 files and DEFAULT_obs_def_mod.F90 are 
normal Fortran 90 files with additional specially formatted comments 
that guide the preprocess program.

See the detailed documentation in:
• observations/forward_operators/DEFAULT_obs_def_mod.html
• observations/forward_operators/obs_def_mod.html
• assimilation_code/modules/observations/DEFAULT_obs_kind_mod.html
• assimilation_code/modules/observations/obs_kind_mod.html

DART Tutorial Section 21: Slide 11



Implementing Observation Definitions in DART

DART preprocess program creates obs_def_mod, obs_kind_mod 

Namelist &preprocess_nml lists all special obs_def modules to be used. 
(Names of DEFAULT F90s and preprocessed f90s can be changed, too) 

/home/nancy/nancy_work/tutorial/section21/tut_section21.fm 10 5/29/08

Implementing observation definitions in DART
DART preprocess program creates obs_def_mod, obs_kind_mod

Namelist preprocess_nml lists all special obs_def modules to be used.
(Names of DEFAULT F90s and preprocessed f90s can be changed, too)

DEFAULT_obs_def_mod.F90

DEFAULT_obs_kind_mod.F90

obs_def_mod.f90

obs_kind_mod.f90

Special obs_def module 1
Example:
obs_def_reanalysis_bufr_mod

Special obs_def module n
Example:
obs_def_radar_mod

preprocess...

DART Tutorial Section 21: Slide 12



Implementing Observation Definitions in DART

DART preprocess program creates obs_def_mod, obs_kind_mod 

If no special obs_def modules are selected, can do identity obs. only. 
DEFAULT modules have special comment lines to help preprocess. 

/home/nancy/nancy_work/tutorial/section21/tut_section21.fm 10 5/29/08

Implementing observation definitions in DART
DART preprocess program creates obs_def_mod, obs_kind_mod

Namelist preprocess_nml lists all special obs_def modules to be used.
(Names of DEFAULT F90s and preprocessed f90s can be changed, too)

DEFAULT_obs_def_mod.F90

DEFAULT_obs_kind_mod.F90

obs_def_mod.f90

obs_kind_mod.f90

Special obs_def module 1
Example:
obs_def_reanalysis_bufr_mod

Special obs_def module n
Example:
obs_def_radar_mod

preprocess...

DART Tutorial Section 21: Slide 13



Implementing Basic Observation Definitions in DART

Basic: New observation type with no specialized forward operator 
code and no extra observation information. 

Will call the model interpolate routine to compute the forward 
operator for each observation type listed.
Needs no extra info in the read/write or interactive create routines. 

Requires adding 1 section to one or more obs_def_mod files. 

Defines the mapping between each specific observation type and 
generic observation quantity, plus a keyword. 

A REQUIRED comment string starts and ends the section. 
All lines in the special section must start with F90 comment: ! 

DART Tutorial Section 21: Slide 14



Implementing Basic Observation Definitions in DART

Define the observation types and associated generic quantities:

! BEGIN DART PREPROCESS KIND LIST 
! RAW_STATE_VARIABLE, QTY_STATE_VARIABLE, COMMON_CODE 
! END DART PREPROCESS KIND LIST

First column is specific type, second is generic quantity.
The keyword COMMON_CODE tells DART to automatically generate 
all required interface code for this new type.
Multiple types can be defined between the special comment lines. 
This is all the file needs to contain. 
The list of generic quantities is found in: 
assimilation_code/modules/observations/DEFAULT_obs_kind_mod.F90
If not already there, the generic quantity must be added to the list. 
See obs_def_AIRS_mod.f90 for another example. 

DART Tutorial Section 21: Slide 15



Implementing Customized Observation Definitions in DART

Customized: Either the observation type cannot simply be 
interpolated in a model state vector, and/or there is extra information 
associated with each observation which must be read, written, and 
interactively prompted for when creating new observations of this 
type. 

Basic observations require only 1 section in the specialized obs_def. 
Customized ones require 6. 

Can have mix of Basic observations (with autogenerated code) and 
Customized observations (with user-supplied code) in the same file. 

REQUIRED comment strings start and end each section. 
All lines in special sections must start with F90 comment: ! 
See obs_def_1d_state_mod.f90 as an example. 

DART Tutorial Section 21: Slide 16



Implementing Customized Observation Definitions in DART

Six special sections are required in a special obs_def_mod. 

1. Define the observation types and associated generic kinds:

! BEGIN DART PREPROCESS KIND LIST
! RAW_STATE_VARIABLE, QTY_STATE_VARIABLE, COMMON_CODE
! RAW_STATE_1D_INTEGRAL, QTY_1D_INTEGRAL
! END DART PREPROCESS KIND LIST 

Two observation types defined:
a. RAW_STATE_VARIABLE: generic quantity QTY_STATE_VARIABLE

All interface code autogenerated by DART
b. RAW_STATE_1D_INTEGRAL: generic quantity QTY_1D_INTEGRAL 

User must supply 4 additional interfaces.
Even if nothing to do, must supply a case statement for each 

DART Tutorial Section 21: Slide 17



Implementing Customized Observation Definitions in DART

Six special sections are required in a special obs_def_mod. 

2. Use statements required for use of obs_def_1d_state_mod

! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
!! Comments can be included by having a second ! at
!! the start of the line
! use obs_def_1d_state_mod, only : write_1d_integral, &
!            read_1d_integral, interactive_1d_integral, &
!            get_expected_1d_integral
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE 

This special obs_def module has 4 subroutines which do work. 

A special obs_def module can also have its own namelist if needed. 

DART Tutorial Section 21: Slide 18



Implementing Customized Observation Definitions in DART

Six special sections are required in a special obs_def_mod. 

3. Case statements required to compute expected observation

! BEGIN DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call get_expected_1d_integral(state, location, &
!                      obs_def%key, obs_val, istatus)
! END DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF 

Each observation type being defined that does not have the 
COMMON_CODE keyword must appear in a case. 

The autogenerated code calls interpolate() from assim_model. 
The RAW_STATE_1D_INTEGRAL is more complicated and calls the 

get_expected_1d_integral in the special obs_def module. 
DART Tutorial Section 21: Slide 19



Implementing Customized Observation Definitions in DART

Six special sections are required in a special obs_def_mod. 

4. Case statements read extra info from an obs_sequence file. 

! BEGIN DART PREPROCESS READ_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call read_1d_integral(obs_def%key, ifile, fileformat)
! END DART PREPROCESS READ_OBS_DEF 

The autogenerated code has a case statement and continue. 
RAW_STATE_1D_INTEGRAL observations requires extra information. 

This is read with read_1d_integral subroutine.
Extra info stored in obs_def_1d_state_mod, indexed by 

unique DEFINITION key.
All obs types must have a case statement, even if no extra info. 

DART Tutorial Section 21: Slide 20



Implementing Customized Observation Definitions in DART

Six special sections are required in a special obs_def_mod. 

5. Case statements write extra info to an obs_sequence file. 

! BEGIN DART PREPROCESS WRITE_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
!  call write_1d_integral(obs_def%key, ifile, fileformat)
! END DART PREPROCESS WRITE_OBS_DEF 

Same situation as READ_OBS_DEF

obs_def_1d_state can read and write whatever it wants 
to describe the RAW_STATE_1D_INTEGRAL observation. 

Only requirement is that it can read what it writes! 
DART Tutorial Section 21: Slide 21



Implementing Customized Observation Definitions in DART

Six special sections are required in a special obs_def_mod. 

6. Case statements to interactively create extra info. 

! BEGIN DART PREPROCESS INTERACTIVE_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call interactive_1d_integral(obs_def%key,ifile,fileformat)
! END DART PREPROCESS INTERACTIVE_OBS_DEF 

DART uses interactive input from standard in to create
type-specific information in a user-extensible form.

It’s nice to be able to do a keyboard create for testing

Standard procedure: construct a text file that drives creation 
(see section 17) 

DART Tutorial Section 21: Slide 22



Implementing Customized Observation Definitions in DART

What is the observation definition ‘extra information’? 
obs_def_1d_state_mod example. 

Interactive creation asks for these 3, stores them with definition key. 

Additional values written with each obs separately.

raw_state_1d integral forward 
operator has 3 parameters: 

1. Half-width of envelope,
2. Shape of envelope,
3. Number of quadrature pts. 

/home/nancy/nancy_work/tutorial/section21/tut_section21.fm 21 5/29/08

Implementing observation definitions in DART
What is the observation definition ‘extra information’?
obs_def_1d_state_mod example.

raw_state_1d integral forward
operator has 3 parameters:

1. Half-width of envelope,
2. Shape of envelope,
3. Number of quadrature points.

Interactive creation asks for these 3, stores them with definition key.
First write outputs total number of these obs plus params for ALL.
First read gets number, params for ALL, stores with definition key.

(Could also write information for each obs separately).

*^ ^ ^^

Halfwidth

Location

Quadrature Points (4)

Boxcar
Envelope

Forward operator is sum of values
interpolated to quadrature points.

DART Tutorial Section 21: Slide 23



Available obs_def modules in DART

obs_def_1d_state_mod.f90
obs_def_AIRS_mod.f90
obs_def_AOD_mod.f90
obs_def_AURA_mod.f90
obs_def_CO_Nadir_mod.f90
obs_def_COSMOS_mod.f90
obs_def_GWD_mod.f90
obs_def_QuikSCAT_mod.f90
obs_def_SABER_mod.f90
obs_def_TES_nadir_mod.f90
obs_def_altimeter_mod.f90
obs_def_cice_mod.f90
obs_def_cloud_mod.f90
obs_def_cwp_mod.f90
obs_def_dew_point_mod.f90
obs_def_dwl_mod.f90
obs_def_eval_mod.f90
obs_def_goes_mod.f90

obs_def_gps_mod.f90
obs_def_gts_mod.f90
obs_def_metar_mod.f90
obs_def_ocean_mod.f90
obs_def_pe2lyr_mod.f90
obs_def_radar_mod.f90
obs_def_radiance_mod.f90
obs_def_reanalysis_bufr_mod.f90
obs_def_rel_humidity_mod.f90
obs_def_simple_advection_mod.f90
obs_def_sqg_mod.f90
obs_def_surface_mod.f90
obs_def_tower_mod.f90
obs_def_tpw_mod.f90
obs_def_upper_atm_mod.f90
obs_def_vortex_mod.f90
obs_def_wind_speed_mod.f90

DART Tutorial Section 21: Slide 24



Available obs_def modules in DART

Examples of frequently used obs_def modules in large models:

obs_def_reanalysis_bufr_mod.f90
Defines all obs likely to be found in BUFR files.

obs_def_ocean_mod.f90
All obs types from the World Ocean Database

obs_def_radar_mod.f90
Forward operator code for reflectivity and radial velocity

obs_def_gps_mod.f90
Simple and integrated forward operators for refractivity obs

obs_def_tower_mod.f90
Land obs types and forward operators DART Tutorial Section 21: Slide 25



Using Custom Observation Definitions in DART

1. Compile and run preprocess: specify absolute or relative paths for 
all required special obs_def modules in
&preprocess_nml: input_files. 

2. Compile all other required program units, including 
obs_def_mod.f90 (only) in the path_names_? files. 
preprocess will add any specialized obs_def code to the 
obs_def_mod.f90 source file. 

3. Select observation types to be assimilated or evaluated in 
&obs_kind_nml. 

DART Tutorial Section 21: Slide 26



How and Where to Compute Forward Operators

Keeping models and observation definitions modular is hard. 

DART recommendation: models should be able to spatially 
interpolate their state variables. 

Forward observation operators in special obs_def modules should 
not expect more than this from models. 

This may be too idealistic:
1. Models could do complicated forward operators for efficiency.
2. This makes it difficult to link models to DART in F90. 

Different version of assim_model could help to buffer this.
Area for ongoing research.

DART Tutorial Section 21: Slide 27



1. Filtering For a One Variable System
2. The DART Directory Tree
3. DART Runtime Control and Documentation
4. How should observations of a state variable impact an unobserved state variable? 

Multivariate assimilation.
5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
6. Other Updates for An Observed Variable
7. Some Additional Low-Order Models 
8. Dealing with Sampling Error
9. More on Dealing with Error; Inflation
10. Regression and Nonlinear Effects
11. Creating DART Executables
12. Adaptive Inflation
13. Hierarchical Group Filters and Localization
14. Quality Control
15. DART Experiments: Control and Design
16. Diagnostic Output
17. Creating Observation Sequences
18. Lost in Phase Space: The Challenge of Not Knowing the Truth
19. DART-Compliant Models and Making Models Compliant
20. Model Parameter Estimation
21. Observation Types and Observing System Design
22. Parallel Algorithm Implementation
23. Location module design (not available)
24. Fixed lag smoother (not available) 
25. A Simple 1D Advection Model: Tracer Data Assimilation

DART Tutorial Index to Sections

DART Tutorial Section 21: Slide 28


